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Passive spatial learning in humans: 
Neural alignment during naturalistic navigation
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“You will watch a video of an agent navigating in a 
virtual space. Please follow the video and memorize the 
location of each object.”

• Learning of spatial environments plays a vital role in the survival of both 
animal and human species. 

• Emerging evidence has highlighted a key navigational neural network in 
supporting the encoding and internal representation of a cognitive map 
of our environments during active navigation[1]. 

• However, the contribution of this network to passive spatial learning (i.e. 
observer effect) of external environments remains unclear[2]. 

• Recent work has shown that passive learning from lecture recordings 
could evoke shared neural representations across participants, with 
greater alignment to experts linked to better learning outcomes[3]. 

• Here, we conducted a 3T fMRI experiment using a virtual reality based 
naturalistic navigation video to investigate the neural mechanism behind 
passive spatial learning.
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Inter-subject correlation during passive spatial learning

• The highest neural alignment was centred on the visual and dorsal attention networks, with 
significantly lower alignment observed to passive-learners in comparison to non-learners. 

• Compared to passive-learners, the low dimensional manifold space of non-learners showed 
significant alterations along two principal axes.

• Neural alignment to passive-learners was associated with subsequent navigation performance, 
especially for the networks that displayed the greatest neural alignment.

• Collectively, our findings highlight the key roles played by both perceptually-oriented and 
memory-based brain networks in the passive encoding of spatial memory.

Neural alignment based on functional connectivity gradients

48 healthy participants (age = 23.69 ± 2.15 years; F/M ratio = 30/18)
Definition of passive-learners:
• Average placement error for the first presentations of each object < 40 vm
• Sum of accurate object placement ≧ 3 objects (50% accuracy)
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Inter-subject correlation (ISC) analysis
• Neuroimaging data was minimally preprocessed using HCP pipelines 

(Qunex[4]) and timeseries were extracted for each Glasser 360 region[5].
• First 5 TRs corresponding to the fixation block were removed (4s). 
• Temporal and spatial ISC[6] were calculated via BrainIAK toolbox:

• For temporal ISC, the timeseries were averaged in each region.
• For spatial ISC, we calculated the spatial pattern similarity of each 

region in each event, then averaged them across events.
• Statistical significance with learning outcomes: one-side non-parametric 

permutation testing (10,000 times) with alpha equals 0.05.

Behavioral assessments
• Placement error
• Placement accuracy

Figure 1. The cortical pattern of neural alignment to passive-learners and non-learners. The neural alignment was calculated for each region by using both temporal timeseries and 
spatial activity patterns while participants watched a naturalistic navigation video. Overall, the highest alignment across groups was centred on the visual and dorsal attention networks 
(Tukey’s HSD test). Across the two alignment methods, all networks showed a significant reduction in alignment to passive-learners except for SMN and Limbic network, with the highest 
effect observed in the VN, DAN, FPN and DMN. The ‘winner takes all’ approach was used to map each MMP regions onto the Yeo-7 network parcellation[8] (VN, visual; SMN, somatomotor; 
DAN, dorsal attention; VAN, ventral attention; FPN, frontoparietal; DMN, default mode network; *P < .001; n.s. denotes no significant difference).

Figure 3. Association of neural alignment with learning outcomes. The correlation analyses revealed neural alignment to passive-learners within the VN and DAN were negatively 
related to the average placement error (better performance) across the initial presentation of each object in a subsequent active retrieval task (one-sided 10,000 permutation test, P < .05). 
Regarding regional displacement in the 2D manifold space in comparison to passive learners, the left perisylvian area (PSL) and the left superior temporal sulcus (STS) in DMN, the left dorsal 
frontal cortex and the right anterior intraparietal cortex (AIP) in DAN, as well as the perirhinal entorhinal cortex (PeEC) were positively correlated with the average placement error, while 
negative correlation (better performance) was mainly located in the left posterior cingulate cortex (7m), the left medial prefrontal cortex (s32), and the right paracentral lobule.

Figure 2. Neural alignment in low-dimensional manifold space. Low dimensional manifolds were derived from the average connectivity matrix of passive-learners. The functional 
connectivity gradients of non-learners were then aligned to the passive-learners. The first two gradients explained most of the variance of the original space (23% and 22%). The first 
gradient exhibited an axis that extended from perceptually-oriented cognition (VN and DAN) to memory-based cognition (DMN, VAN, and SMN). On the other hand, the second gradient 
depicted the separation of DMN and SMN. Network level dispersion revealed shrinkage of the DMN, VN and FPN in non-leaners, with an expansion in VN (*P < .05, **P < .001).

Neuroimaging data preprocessing and analysis pipelines
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The primary goal of our 3T fMRI study was to investigate the 
alignment of neural responses across participants during 
passive spatial learning using a virtual reality based naturalistic 
navigation paradigm, and to predict learning outcomes.
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Functional connectivity gradient analysis
• Functional connectivity gradients were extracted via BrainSpace toolbox based on the normalized angle similarity 

of connectivity profiles using a diffusion map embedding algorithm[7].
• Average passive-learner connectivity matrix was used to generate the template gradient space with 10 dimensions.
• Individual gradients of each non-learner was functionally aligned to the learner template by Procrustes rotation.
• Dispersion was calculated as the Euclidean distance from each region to the origin point in the 2D space defined by 

top two functional gradients. In addition, individual-template displacement was related to learning outcomes.
• Statistical relationship with learning outcomes: two-sided non-parametric permutation testing (10,000 times).
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